随机有限元方法(转)

2011-02-21 09:05

      在结构分析中,可靠性评价方法在单个构件或简单子结构中发展了许多成熟的解析算法,当研究对象扩展为整个体系结构时,解析算法的应用举步维艰,研究者不得不退而求其次,采纳基于经验化和许多假定的简化近似方法。产生以上问题的原因在于解析算法仅适用于结构显式功能函数。当结构复杂度显著增加,如自由度和随机变量数目的增多、非线性和动力效应的引入等,结构荷载和抗力相关的功能函数便具有了隐式特征,解析算法难于求解而不再适用。与此相对应的,有限元方法能够尽可能真实地再现各类结构的组成、连接、支撑、非线性状态、加载失效过程,有效地求解各类复杂结构实际行为,但是确定的有限元方法不能考虑变量的随机性,这样限制了有限元方法在可靠性分析中的应用。为了兼得两种方法的长处,产生了随机有限元(SFEM)或称概率有限元(PFEM)的思想,基于随机有限元的可靠性分析可以尽可能真实地评价简单或复杂系统的可靠性。它类似于确定性的有限元分析,但在分析中考虑了变量的不确定性。

      随机有限元方法作为一种可靠度分析算法,主要目的在于回答一种事件或现象出现的可能性大小,当然这依赖于相应的确定性算法是否具有足够的分析精度,也取决于我们所掌握的信息资料.举个例子,当需要评估一座房屋在其使用期内台风破坏及可能的经济损失时,首先预测使用期内它可能遇的最大台风风速,而后在此基础上,进行该台风风速作用下的房屋风致动力响应分析,在这个过程中可以发现有许多参数并非是一个确定性的数值,比如最大台风风速为介于Vmax和Vmin之间,风速场空间相关因子分布于7至21之间,采用确定性数值输入也必然得出确定性的结果,多个分析结果也位于某一区间,呈现某种分布.更多的时候,完成所有这种确定性参数到确定性结果工作是不现实的,这样看起来很难得出肯定性的分析结论,那么如何判断房屋是否破坏呢?可靠度算法应运而生.
      随机有限元仅是众多可靠度算法中的一种,擅长解决复杂结构体系隐式功能函数的验算法点求解问题,它在确定性方法基础上溶入敏感度分析技术和改进二阶矩方法,从理论上讲它可以包含所有确定性方法的特征,比如考虑非线性效应和动力响应计算,其求解结果除可以给出确定性算法结果外,亦可求解响应的均值,方差和可靠度指标.但是在实际应用中,由于计算效率和稳定性等方面的要求,需要忽略一些因素的作用,如减化动力及非线性求解步骤,对结构模型进行等效凝缩等.
      在实际工程中,确定性算法难于回答许多关键问题,可靠性的分析结论或许提供给工程师更好的解决问题的办法.尽管目前,可靠度算法也面对理论分析与应用方面的种种问题,但随着人们观念的转变和技术水平的发展,有理由相信这种算法本身所孕含的潜质一定会发扬光大.

学习随机有限元需要两方面的知识基础:
  1. 确定性有限元算法;
  2. 概率论及可靠度分析理论。
       可以参考如下书藉:
[1]  Achintya Haldar, Sankaran Mahadevan. Reliability Assessment Using Stochastic Finite Element Analysis. John Wiley & Sons, inc., 2000.
[2]  Haldar A., Mahadevan S. Probability, Reliability, and Statistical Methods in Engineering Design. Wiley, New York, 2000.